EE 435

Homework 2 Solutions

Spring

Problem 1 and 2

Part A

Begin by drawing the amplifier's small-signal model.

Let $V_{1}=V_{I N P}, V_{2}=V_{I N N}$, and $V_{4}=V_{3}$. We can form the following two equations:
(1): $V_{\text {OUT }}\left(g_{o 2}+g_{o 4}+s C_{L}\right)+g_{m 2} V_{I N N}+g_{m 4} V_{3}=0$

$$
\text { (2): } V_{3}\left(g_{o 1}+g_{o 3}+g_{m 3}\right)+g_{m 1} V_{I N P}=0
$$

Part B

Rewrite (2) to allow for V_{3} to be substituted:

$$
\text { (2.1): } V_{3}=\frac{-g_{m 1} V_{l N P}}{g_{o 1}+g_{o 3}+g_{m 3}}
$$

Substitute (2.1) into (1)

$$
\text { (1.2): } V_{O U T}\left(g_{o 2}+g_{o 4}+s C_{L}\right)+g_{m 2} V_{I N N}+g_{m 4} \frac{-g_{m 1} V_{I N P}}{g_{o 1}+g_{o 3}+g_{m 3}}=0
$$

Solve for $V_{\text {OUT }}$:

$$
\begin{aligned}
(1.3): V_{O U T}= & -\frac{g_{m 2} V_{I N N}}{g_{o 2}+g_{o 4}+s C_{L}}+\frac{g_{m 4} g_{m 1} V_{I N P}}{\left(g_{o 1}+g_{o 3}+g_{m 3}\right)\left(g_{o 2}+g_{o 4}+s C_{L}\right)} \\
& =\frac{-g_{m 2} V_{I N N}+\frac{g_{m 4} g_{m 1} V_{I N P}}{g_{o 1}+g_{o 3}+g_{m 3}}}{g_{o 2}+g_{o 4}+s C_{L}}
\end{aligned}
$$

Part C

To make MATLAB solve for $A_{V}=\frac{V_{\text {OUT }}}{V_{I N}}$, it is necessary to put $V_{I N P}$ and $V_{I N N}$ in terms of the differential voltage: $V_{I N P}=\frac{V_{D}}{2}$ and $V_{I N N}=-\frac{V_{D}}{2}$. Note that, as soon as this is done, the math no longer correctly considers the effects of common-mode voltage.

EE 435
Homework 2 Solutions
Spring 2024

```
% Create variables which will occur in the math
syms Vout VD gm1 gm2 gm3 gm4 go1 go2 go3 go4;
syms sCL V3;
% Create the first equation, equivalent to (1) from
% the previous part
eqn1 = Vout * (go2 +go4 + sCL) - gm2 *VD/2 + gm4 *V3 == 0;
% Create the second equation, equivalent to (2) from
% the previous part
eqn2 = V3 * (go1 + go3 + gm3) + gm1 * VD/2 == 0;
% To solve, convert both equations into a matrix.
{A, B] = equationsToMatrix({eqn1 eqn2], {Vout V3]);
```

\% Solve the matrix
results $=$ linsolve (A, B)

Formatted, the result is as follows:

$$
v_{\text {OUT }}=\frac{v_{D}\left(g_{m 1} g_{m 4}+g_{m 2} g_{m 3}+g_{m 2} g_{o 1}+g_{m 2} g_{o 3}\right)}{2\left(g_{m 3}+g_{o 1}+g_{o 3}\right)\left(g_{o 2}+g_{o 4}+s C_{L}\right)}
$$

Equivalently:

$$
\frac{V_{o u t}}{V_{D}}=A_{V}=\frac{\left(g_{m 1} g_{m 4}+g_{m 2} g_{m 3}+g_{m 2} g_{o 1}+g_{m 2} g_{o 3}\right)}{2\left(g_{m 3}+g_{o 1}+g_{o 3}\right)\left(g_{o 2}+g_{o 4}+s C_{L}\right)}
$$

Part D

$$
A_{V} \approx \frac{\left(g_{m 1} g_{m 4}+g_{m 2} g_{m 3}\right)}{2\left(g_{m 3}\right)\left(g_{o 2}+g_{o 4}+s C_{L}\right)}
$$

Because $\left(M_{1}, M_{2}\right)$ and $\left(M_{3}, M_{4}\right)$ are matched, we can make the statement that $g_{m 1}=$ $g_{m 2}, g_{o 1}=g_{o 2}, g_{m 3}=g_{m 4}$, and $g_{o 3}=g_{o 4}$. This allows us to simplify further:

$$
A_{V} \approx \frac{2 g_{m 1} g_{m 3}}{2 g_{m 3}\left(g_{o 1}+g_{o 3}+s C_{L}\right)}=\frac{g_{m 1}}{g_{o 1}+g_{o 3}+s C_{L}}
$$

Problem 3

Recall that a trans-resistance amplifier is an amplifier whose output voltage is equal to the applied input current multiplied by some gain, R_{T}. We can start by finding the input current, which is simple to do since an ideal trans-resistance amplifier has zero input impedance:

$$
I_{I N}=\frac{V_{I N}}{R_{1}}+\frac{V_{\text {OUT }}}{R_{2}}
$$

We know that the output voltage of the amplifier is given as follows:

$$
V_{o u t}=R_{T} I_{I N}
$$

We can adjust the two equations slightly to give us one equation in terms of $V_{\text {OUT }}$ and $V_{I N}$:

$$
\begin{aligned}
\frac{V_{O U T}}{R_{T}}=\frac{V_{I N}}{R_{1}}+\frac{V_{O U T}}{R_{2}} \rightarrow & V_{O U T}\left(\frac{1}{R_{T}}-\frac{1}{R_{2}}\right)=\frac{V_{I N}}{R_{1}} \rightarrow V_{O U T}\left(\frac{R_{2}-R_{T}}{R_{2} R_{T}}\right)=\frac{V_{I N}}{R_{1}} \\
& \frac{V_{O U T}}{V_{I N}}=A_{V}=\frac{R_{2} R_{T}}{R_{1}\left(R_{2}-R_{T}\right)}
\end{aligned}
$$

The voltage gain is thus $\frac{R_{2} R_{T}}{R_{1}\left(R_{2}-R_{T}\right)}$. As R_{T} approaches infinity, this simply becomes $-R_{2} / R_{1}$.

EE 435
Homework 2 Solutions
Spring 2024

$$
\lim _{R_{T} \rightarrow \infty} \frac{R_{2} R_{T}}{R_{1}\left(R_{2}-R_{T}\right)}=-\frac{R_{2}}{R_{1}}
$$

Problem 4

Note: Solution written for ON 0.5 s process as this is the process that students used for this HW. In this process, $\mu_{n} C_{O X} \approx 112.8 \mu$ and $V_{T n} \approx 0.79 \mathrm{~V}$.

Part A and B

If $V_{I N Q}=0.5 \mathrm{~V}, V_{\text {OUTQ }}=0.5 \mathrm{~V}, V_{D D}=1 \mathrm{~V}$, and $V_{S S}=-1 \mathrm{~V}$, then the transistor's quiescent $V_{D S}$ and $V_{G S}$ voltages are both 1.5 V . Recall that, for a transistor to be saturated, $V_{D S}$ must be greater than or equal to $V_{G S}-V_{T}$. If $V_{D S}$ and $V_{G S}$ are equal, this will be true so long as the MOSFET is on $\left(V_{G S}>V_{T}\right)$. So, we can assume the transistor is saturated.

Now, recall the equation for a MOSFET placed in saturation. Note the inclusion of the $1+\lambda V_{D S}$ term.

$$
I_{D}=\frac{1}{2} \mu_{n} C_{O x} \frac{W}{L}\left(V_{G S}-V_{T n}\right)^{2}\left(1+\lambda V_{D S}\right)
$$

What is λ ? Recall from EE 330 that λ is highly dependent on device length, increasing dramatically with small lengths. It is also dependent on the current through the device; in EE 330 , it was observed that a higher current increased λ. Using methods similar to the ones used in EE 330, an approximate value of λ can be obtained. A reasonable value obtained for a $1.8 \mu \mathrm{~m}$ length transistor is $0.02055 \mathrm{~V}^{-1}$.

Substituting in known values, we can solve for W / L :

$$
\begin{gathered}
4 m A=\frac{1}{2}(112.8 \mu)\left(\frac{W}{L}\right)(1.5-0.79)^{2}(1+0.02055 * 1.5) \\
\frac{W}{L}=136.483
\end{gathered}
$$

This W / L ratio can be confirmed in Virtuoso by recreating the circuit and obtaining the circuit's DC operating point. Doing this yields a $V_{O U T}$ of approximately -0.1186 V instead of 0.5 V . This is the result of error (see the image below, which illustrates how dramatically $V_{O U T}$ changes with the W / L ratio in this circuit).

Adjusting our work slightly shows that a width-length ratio of 134.3 yields a quiescent output voltage of 507 mV , which is well within 2.5% of the desired 0.5 V point.

Part C

Voltage gain can be expressed as $A_{V}=\frac{9_{m}}{g_{0}} \cdot g_{m}$ and g_{0} can be calculated as follows:

$$
\begin{gathered}
g_{m}=\sqrt{2 \mu_{n} C_{O x} \frac{W}{L} I_{D Q}}=\sqrt{2 * 112.8 \mu * 134.3 * 4 m} \approx 11 \mathrm{~m} \\
g_{0} \approx \lambda l_{D Q}=0.02055 * 4 m=82.2 \mu
\end{gathered}
$$

Thus:

$$
A_{V} \approx 133.9
$$

Part D
To confirm the amplifier's small-signal gain, apply a small-signal AC input and observe the amplifier's small-signal output. Dividing the input and output magnitude yields the small-signal gain. Doing so yields a gain of approximately 139.5. This is within 5% of the expected gain.

Problem 5 and 6

Recall the following equations for the design of a 5 T amplifier:

$$
\begin{aligned}
A_{0} & =\frac{1}{\lambda_{1}+\lambda_{3}} \frac{1}{V_{E B 1}} \\
\omega_{G B W} & =\frac{P}{V_{D D} C_{L}} \frac{1}{2 V_{E B 1}}
\end{aligned}
$$

EE 435

Homework 2 Solutions

Spring 2024
One design process is to choose the length of the NMOS and PMOS transistors such that we know λ_{1} and λ_{3}, and to then solve for what $V_{E B 1}$ is needed to obtain the gain. Then, we can solve for the current which must be drawn through M_{1-4} to obtain the desired GBW. All remaining excess bias voltages can be selected for convenience of calculations.

An Excel table is useful for designing op-amps:

xey				Constraters		Aperis Rapmeten		
color	口ef.			Welve.	Unt	heen UnCoy	Yalve:	bit
	Culculted/ Eownlon, yoo :			$3560 \mathrm{y}$			12186	NM2
	Constraint		VSS			unvo	$30 e-0$	
	Dof		0.	$106-12$	\%	UgCom	30E-NM	NH2
	Final Result		G8w	20\%		vta!	73006.3 V:	
				12.0ch	He	Vtp:	920.06 .3y:	
			40:	Satero	d8			
				$3{ }^{1} 2 \mathrm{I}+0$	V/v			
	\%.......)							
	Design :							
Wrame	Vive		Oesctition,					
退, - -		$508{ }^{5}$	lentth of.M1					
WhLLambda		1936.3.	lambde $1:$					
12:		SAC-61	lexpthet M2					
[Ma;Lambde		* 25.2.	Lambda 2					
13 !		S.0E-6	Length of M3					
M Gmbdr		19.7E-3	Lambds 3		:			
14.		S.0E-6	Length of M4		-			
Mavimbda:		19.7E-3	Lambda 4		,			
15:........		5.0E-6	Length of MS		,			
Whumbd		$19.2 \mathrm{E} \cdot 3 \mathrm{~L}$	tambda 5					
Wal		$158.15-3$!			
v63		158.1E-3			!			
Ves3		200.08-3			;			
VGa4		$20000 \cdot 3$!			
W8s		$200.05 \cdot 3$						
P:		13.9E.6			:			
11		4.0E-6						
Mi		1.4E+0	W1	7.0E-6				
M2		$1.4 E+0$	W2	7.05-6				
Ma	F	$2.6 E+0$	W3	$13.2 \mathrm{E}-6$				
Din		$2.6 E+0$	W4	13.2 E- 6				
MS		$1.85+0$	WS	8.8E-6	\vdots			
yoi		2.45+0		$11.9 \mathrm{E}-6$				
Y82:		990.0E-3			!			

Simulating the amplifier gives a gain of 42.5 dB and a gain-bandwidth of 1.759 M Hz . This is below spec but is improved by decreasing $V_{E B_{1}}, \lambda_{1}$, and λ_{3} further.

Problem 8

Part A

For the first amplifier:

Write down what we know first:

$$
\begin{gathered}
V_{\text {OUT }}=A(s)\left[V_{I N}-V_{1}\right] \\
V_{1}=\frac{R_{1} V_{\text {OUT }}}{R_{2}+R_{1}}
\end{gathered}
$$

Now, substitute in:

$$
V_{O U T}=A(s)\left[V_{I N}-\frac{R_{1} V_{O U T}}{R_{2}+R_{1}}\right]
$$

Divide each side to find closed-loop gain:

$$
\frac{V_{\text {OUT }}}{V_{I N}}=A_{C L}=A(s)\left[1-\frac{R_{1} A_{C L}}{R_{2}+R_{1}}\right]
$$

EE 435

Homework 2 Solutions
Spring 2024

$$
\begin{gathered}
A_{C L}\left[1+\frac{R_{1}}{R_{2}+}-R_{1}\right. \\
A_{C L}=\frac{A(s)]=A(s)}{1+\frac{R_{1}}{R_{2}+R_{1}} A(s)}=\frac{\frac{G B}{S}}{1+\frac{R_{1}}{R_{2}+R_{1}} \frac{G B}{s}}=\frac{G B}{s+\frac{R_{1}}{R_{2}+R_{1}} G B}=\frac{\frac{R_{2}+R_{1}}{R_{1}}}{\frac{S}{\frac{R_{1}}{R_{2}+R_{1}} G B}+1}
\end{gathered}
$$

For the second amplifier:

Write down what we know first:

$$
\begin{gathered}
V_{\text {OUT }}=A(s)\left[-V_{1}\right] \\
\frac{V_{1}-V_{I N}}{R_{1}}+\frac{V_{1}-V_{\text {OUT }}}{R_{2}}=0
\end{gathered}
$$

Now, solve for V_{1} and substitute:

$$
\begin{gathered}
-\frac{-\frac{V_{O U T}}{A(s)}-V_{I N}}{R_{1}}+\frac{-\frac{V_{\text {OUT }}}{A(s)}-V_{\text {OUT }}}{R_{2}}=0 \\
-R_{2}\left[\frac{V_{O U T}}{A(s)}+V_{I N}\right]-R_{1}\left[\frac{V_{O U T}}{A(s)}+V_{\text {OUT }}\right]=0 \\
-V_{\text {OUT }}\left[\frac{R_{2}}{A(s)}+\frac{R_{1}}{A(s)}+R_{1}\right]-V_{I N}\left[R_{2}\right]=0 \\
\frac{V_{\text {OUT }}}{V_{I N}}=A_{C L}=-\frac{R_{2}}{\frac{R_{2}}{A(s)}+\frac{R_{1}}{A(s)}+R_{1}}=-\frac{R_{2} A(s)}{R_{2}+R_{1}+R_{1} A(s)}=-\frac{\frac{R_{2} G B}{s}}{R_{2}+R_{1}+\frac{R_{1} G B}{s}} \\
A_{C L}=-\frac{R_{2} G B}{s\left(R_{2}+R_{1}\right)+R_{1} G B}=-\frac{R_{2} / R_{1}}{\frac{S}{\frac{R_{1} G B}{R_{2}+R_{1}}}+1}
\end{gathered}
$$

Part B
In the forms the solutions were left in in Part A, the 3 dB bandwidth is simply the denominator of the s / x fraction. Thus, for both circuits, the 3 dB bandwidth (in radians/second) is $\frac{R_{1}}{R_{1}+R_{2}} G B$.

Problem 9 It was stated in class that all even-ordered distortion terms introduced by the amplifier vanish in symmetric fully differential amplifiers. Prove this fact. (Hint: assume that if an ideal differential sinusoidal signal is applied at the input, one of the single-input outputs is given by the expression

$$
\mathrm{V}_{\text {OUT1 }}(\mathrm{t})=\mathrm{A}_{1} \sin \left(\omega_{1} \mathrm{t}+\theta_{1}\right)+\sum_{\mathrm{k}=2}^{\infty} \mathrm{A}_{\mathrm{k}} \sin \left(\mathrm{k} \omega_{1} \mathrm{t}+\theta_{\mathrm{k}}\right)
$$

where ω_{1} is the frequency of the sinusoidal input and the parameters A_{2}, A_{3}, \ldots and $\theta_{2}, \theta_{3}, \ldots$ characterize the distortion introduced by the amplifier.)

Solution: The "Hint" may not be helpful. Denote $\mathrm{V}_{\mathrm{O} 1}$ and $\mathrm{V}_{\mathrm{O} 2}$ as the two outputs of the symmetric fully differential amplifier. If the input on one side is $V_{d} / 2$ and on the other side it is $-V_{d} / 2$, it follows from symmetry that

$$
\begin{aligned}
& \mathrm{V}_{\text {OUT1 }}=\sum_{\mathrm{i}=1}^{\infty} \mathrm{A}_{\mathrm{i}} \mathrm{~V}_{\mathrm{d}}^{\mathrm{i}} \\
& \mathrm{~V}_{\text {OUT2 }}=\sum_{\mathrm{i}=1}^{\infty} \mathrm{A}_{\mathrm{i}}\left(-\mathrm{V}_{\mathrm{d}}\right)^{\mathrm{i}}
\end{aligned}
$$

Thus the differential output is given by

$$
\mathrm{V}_{\text {OUTDIFF }}=\mathrm{V}_{\text {OUT } 1}-\mathrm{V}_{\text {OUT } 2}=\sum_{\mathrm{i}=1}^{\infty} \mathrm{A}_{\mathrm{i}}\left(\mathrm{~V}_{\mathrm{d}}^{\mathrm{i}}-\left(-\mathrm{V}_{\mathrm{d}}\right)^{\mathrm{i}}\right)
$$

But

$$
\sum_{i=1}^{\infty} A_{i}\left(V_{d}^{i}-\left(-V_{d}\right)^{i}\right)=\sum_{i=1}^{\infty} A_{i}\left(V_{d}^{i}-(-1)^{i} V_{d}^{i}\right)
$$

For i even, the terms in () vanish and for i odd, the terms in the () are of the same sign so

$$
\mathrm{V}_{\text {OUTDIFF }}=\sum_{\substack{\mathrm{i}=1 \\ \mathrm{i} \text { odd }}}^{\infty} 2 \mathrm{~A}_{\mathrm{i}} \mathrm{~V}_{\mathrm{d}}^{\mathrm{i}}
$$

So now assume $\mathrm{V}_{\mathrm{d}}=\mathrm{V}_{\mathrm{m}} \sin (\omega \mathrm{t})$. Thus

$$
\mathrm{V}_{\text {OUTDIFF }}=\sum_{\substack{\mathrm{i}=1 \\ \mathrm{i} \text { odd }}}^{\infty} 2 \mathrm{~A}_{\mathrm{i}} \sin ^{\mathrm{i}}(\omega \mathrm{t})
$$

Observe that $V_{\text {outdiff }}$ is comprised only of odd powers of $\sin (\omega t)$. But from trig identities, odd powers of $\sin (\omega t)$ include only odd harmonic terms and thus no even-ordered distortion terms are present.

